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I. INTRODUCTION

Rate is a concept common to almost all scienti�c and technical disciplines. The Oxford
Desk Dictionary [Abate 1997] de�nes rate as a �numerical proportion expressed in units�
and as a �pace of movement or change.�These de�nitions are not very helpful, but they do
convey the deceptive simplicity of the idea.

Despite this almost pervasiveness, there is little in the way of a common theory of rates.
In particular, the various formulations of rates are often imprecise and ad hoc. Further, the
rate di¤erential equation, an inseparable part of the basic concept, is almost always a deus ex
machina. As a result, rate formulations are often arcane and less accurate than they could
be.

Our purpose here is to investigate and elaborate the nucleus of just such a general theory
of rates. This theory is new and incomplete, but it o¤ers great potential for the understanding
and application of rates.

This body of methodology was �rst introduced in [Fowler 2001] and then elaborated in
[Fowler 2004] to expand the nature of attrition rate di¤erential equations.

II. WHAT�S A RATE?

Regardless of whether we are describing the collisions of photons with other particles, the
chemical interaction of molecules, or the populations of sexually or asexually reproducing
animals, we are dealing with events that are well localized in time; that is, they take less
time to occur than the period of observation. To some degree, we may view these events as
occurring impulsively or instantaneously, although we shall almost immediately generalize
the theory to accommodate events that have a �nite duration.

This leads us to a third de�nition of rate: rate is a means of continuously representing
the change in quantity of a population of discrete events or other observables. By this we
mean that a rate is a mapping of discrete events into a continuous representation.

Actually, we want to also consider the opposite as well, the mapping of a continuous
process into discreteness. For simplicity at this point, we shall assume this complementary
aspect is merely a matter of piecewise integration, however deceptively.

Simply put, however, a rate is a mathematical expression of how many things take place
in a unit of time. As such, it is a change of representation from a collective discrete rep-
resentation of when each of the things occur to a continuous representation. Ideally this
transformation reproduces the occurrence times of the events accurately, although the very
concept of a rate implies some sort of smoothing or averaging of event times.

We advance a set of propositions to lay the groundwork for a general theory of rates:
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Proposition 1. A rate is a mapping of a collection or series of connected but discrete events
or observations into a continuous counting representation.

This is essentially a restatement of the basic de�nition above in somewhat more math-
ematical terms. The key point is that we are starting with discrete, that is, punctuated
in position (normally time), events that we transform into some continuous representation.
The continuous representation is an enumeration of the events even though it is no longer
integer.

Proposition 2. Observable events consist of at least two measurable quantities: the imme-
diate intensity arising from the occurrence of the event (which may be just the occurrence)
and the position of the event.

Each of these punctuated events has a magnitude and a position. That is, we know how
big some aspect of the event is. Assuming the position is temporal, we know when the event
occurs.

At this point, we have not yet addressed whether the duration of the event is �nite (as
opposed to in�nitesimal.) We further assume that these two quantities are either completely
independent of each other, or if they are dependent, we have a model of the nature of the
dependency.

Proposition 3. Events occur as the e¤ect of some cause.

This is not some supernatural phenomenon. We assume that the basic scienti�c relation
of cause and e¤ect appertain. We further assume that we know this relationship.

Proposition 4. Events may be caused by single or multiple agents.

We assume that the causality can be systematized; that it is not holistic. Speci�cally, we
assume that the cause agents may be aggregable.

Proposition 5. Events may be described by some mathematical formalism.

The mechanics of the events has some mathematical description. This follows largely
from the proposition of cause and e¤ect, but it also says that things are fairly well behaved.

Proposition 6. The mechanism that causes events may be singular or repetitive.
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This simply says that cause agents may cause one event or they may cause several in
succession.

Proposition 7. Cause agents are independent and may be identical, but their association
in a rate process has a collective e¤ect.

This lets us treat the agents as if they are identical but independent. It also acknowledges
that they have a di¤erent e¤ect when they band together. Recall Napoleon�s dictum �There
is a quality in quantity.�

Proposition 8. Events occur in a discrete manner although not necessarily limited to an
in�nitesimal change in position.

Although the events are punctuated, they may not occur instantaneously.

Our intent is captured in Figure 1 where we depict two discrete event trajectories (they
look rather like stairs,) and two equivalent continuous representations. In this case, these
are taken from the application of General Rate Theory to attrition.

Figure 1. Discrete Event and Continuous Representation Trajectories

Our approach is to �rst brie�y present the pieces of mathematics needed to develop
rate theory. We then use these pieces to �rst develop the continuous representations of the
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discrete events and then the general rate di¤erential equations. Finally, we present several
examples of the application of the theory.

III. FUNCTIONAL THEORY

Our starting point in developing this General Theory of Rates is what is often called
Functional Theory [Stakgold 1998], although it is sometimes called the Theory of Generalized
Functions [Erdelyi 1962] or Distribution Theory. One of the most common uses of this theory
is the development of Green Functions. A Green Function is a representation of the behavior
of a mechanical system under the imposition of an impulsive �force." Our approach is similar
in that we are dealing with impulsive events. The di¤erence is that the Green Function, via
the vehicle of the properties of the Dirac delta function, is used to describe the behavior of a
mechanical system under the imposition of a general �force," while our interest in a General
Theory of Rates is �nding one or more means of transforming a general collection of Dirac
delta functions into a continuous representation.

The Dirac or strong delta function, � (t� t0), is not a function in the normal sense. In
particular, it has the behavior

� (t� t0) =

8<:
0; t < t0

1; t = t0

0: t > t0
(1)

One then naturally asks the question, If the integral

t0+"Z
t0�"

� (t� t0) dt0 = 1; " > 0; (2)

then for what value of "0 < " does the equivalent integral

t0+"0Z
t0�"0

� (t� t0) dt0 = f (3)

have a value of 0 < f < 1? This is clearly conceivable, and our intuition tells us that
such a situation must exist. The methodology or formalism for describing this is given by
Functional Theory.

Delta functions have functional representations as Gaussians (among other forms) in a
weak sense. By weak, we mean that if we consider

g (x : x; �) =
1p
2��

e�(x�x)
2=2�

2

; (4)

which we know has unit integral, then

lim
�!0

g (x : x; �)! � (x� x) (5)
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in the sense of Equation (1).

We may extend this idea even to the simple Negative Exponential Distribution (NED),

p (t : �) = � e��t: (6)

If we take the limit �!1, then

p (t : �!1) =
�
1; t = 0;
0; t > 0

(7)

This is again a delta function. We shall refer to this behavior as a weak delta function (or
functional) in contrast with a classical or strict sense.

The basic idea of functional (or distribution) theory is that instead of describing a function
f (x) with a value at every point x, we use the real number

R
Rn

f (x) � (x) dx for every �

belonging to a class of accessory functions. In this representation, f is a functional on the
class of accessory functions. For developing rate theory, the class of accessory functions is
comprised of the individual probability functions [Stakgold 1998].

The functional, designated by hf; �i, is de�ned by the integral relationship

hf; �i �
Z
Rn

f (x) � (x) dx; (8)

which may be multi-dimensional. This integral spans the space of f (x), and the accessory
functions must span this space as well. The derivative of the functional is given by�

d

dx
f; �

�
=

�
f;� d

dx
�

�
: (9)

In particular, we note that if the function f (x) has discrete jumps that occur at points
xi, then its functional derivative has the form

d

dx
f =

�
d

dx
f

�
+
X
i

�fi � (x� xi); (10)

where [f 0] is the piecewise continuous derivative and �fi is the signed magnitude of the ith

jump. We shall refer to this as the jump factor or function, depending on form.

Let us now consider the di¤erential equation

du

dx
= f: (11)

If f (x) is a continuous function, then we may �nd a classical (or strict) solution u (x)
that obeys the di¤erential Equation (11) continuously at every point x. If, however, f is a
functional, then u is a solution of the di¤erential Equation (11) if and only if

�
�
u;
d�

dx

�
= hf; �i (12)
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for all � in the set that spans the space. In particular, if we want u to be a function,
then Equation (12) reduces to the di¤erential Equation (11) in the weak sense. We must
note, however, that any weak solution that has m continuous derivatives, where m is the
dimension of the space, is a classical solution. For our purposes, we adopt this immediately
as an assumption.

What this translates to is that if we can �nd a way to reduce the delta functions of
Equation (10) to having a weak behavior, then we reduce that equation from a functional
di¤erential equation to a function (or classical) di¤erential equation. In terms of our search
for a General Theory of Rates, this di¤erential equation is a (if not the) fundamental equa-
tion.

IV. OVERVIEW OF LAPLACE TRANSFORMS

Our second body of theory, which is particularly useful in considering deterministic event
times, is Laplace Transforms (LT) [Doetsch 1961].

Assume that f (t) , a function, is well behaved and de�ned for t � 0. Then we may de�ne
the Laplace Transform of f (t) as

L [f (t)] =

Z 1

0

e�stf (t) dt; (13)

� f (s) :

The Inverse Laplace Transform is de�ned as

f (t) =
1

2�i
lim
�!1

Z +i�

�i�
estf (s) ds; (14)

which, unlike the Inverse Fourier Transform, is not symmetric and is considerably more
di¢ cult to perform than the transform itself. For this reason, a common practice with LT
is to invert it by wimp inspection of tables of transforms rather than by macho integration.

The LT also obeys the convolution theorem,

L

�Z t

0

f1 (t� t0) f2 (t0) dt0
�
= f1 (s) f2 (s) : (15)

Derivatives have the transform

L

�
dnf (t)

dtn

�
= snf (s)�

n�1X
j=0

sj
dn�j�1f (t)

dtn�j�1

����
t=0

; (16)

and repeated integrals have the transform

L

�Z t

0

dtn::

Z t2

0

dt1f (t1)

�
= s�nf (s) : (17)
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Also useful are the moments,

L [tnf (t)] = (�1)n d
nf (s)

dsn
: (18)

The expected value of a function is usually given as

hti =
Z 1

0

t0 f (t0) dt0; (19)

assuming f (t) is de�ned on [0;1). If we write the quantity
R1
0
t0 f (t0) e�st

0
dt0, which is

just the LT of t f (t), then we see immediately that

hti = lim
s!0

L [t f (t)] ; (20)

and by Equation (18), we may make the association

hti = � lim
s!0

df (s)

ds
: (21)

While multidimensional LT are possible, they seldom arise so we shall not treat with
them here.

V. PROBABILITY THEORY

If an event is stochastic, it has a Cumulative Probability Function or Cumulative
Distribution Function (CDF) that we designate as a capital Roman letter function of
time (for example, P (t)) and possibly other parameters or variables. This introduces an
implicit assumption that the process producing the event is continuous and mathematically
well behaved. In particular, we assume that the CDF is at least m times di¤erentiable.
In some cases, notably with the combat processes in the next chapter, we shall deal with
discrete probabilities, but they are still assumed to be well behaved.

Because of this di¤erentiability, it is also useful to deal with the Probability Density
Function (PDF) that we designate as a small Roman letter function of time (for example,
p (t)) and possibly other parameters or variables. The CDF is the probability (we use
likelihood as a synonym,) that an observable event has occurred by time t, while the PDF is
the probability per unit time that the observable event has occurred within the in�nitesimal
interval dt of time t. As indicated above, these are related as derivative and integral, so that
we have the relationships,

p (t) � d

dt
P (t) ; (22)

P (t) �
tZ
0

p (t0) dt0:

7



In addition to the Guassian and NED distributions already discussed, we also have the
Gamma Distribution of (integer) order n (also sometimes called the nth rank Erlang Distri-
bution,) given by

pn (t) �
�

(n� 1)! (�t)
n�1 e��t: (23)

This distribution has expected value and standard deviation of

hti =
n

�
; (24)

� =

p
n

�
;

which is sometimes referred to as a Poisson standard deviation since this distribution occurs
in a Poisson process.

Yet another distribution we want to consider is the Lognormal Distribution given by

p (t) =
1p
2�� t

exp

"
�(ln (t)� ln (�))

2

2�2

#
; (25)

which is just a normal distribution of the logarithm of the random variable t. This distrib-
ution has expected value and standard deviation

hti = � e��
2/2; (26)

� = �
q
e��2 (e��2 � 1);

which is rather complicated and makes for some interesting conversion challenges. Notably
the LT of the lognormal distribution does not have a simple representation. It is easy to
calculate. All one has to do is expand the exponential e�st in an in�nite series about zero in
either variable. The integral is then calculated for each term and produces an exact result.
Unfortunately, each term of tn produces a transform term of e�n

2�2/2. Thus the resulting
series, which is the LT, is well de�ned but may not be compactly summed.

For deterministic events, we shall represent the PDF of the event by the Dirac (strong)
delta function de�ned by Equation (1). In most cases, we shall be dealing with the translated
delta function � (t� t0), which has non-zero value only at t = t0. The expected value and
standard deviation of this translated delta function distribution are

hti = t0; (27)

� = 0;

which are what we should expect for a deterministic event. That is, the event has a de�nite
time of occurrence.

Two elaborations of probability theory are needed to describe repeated events caused by
the same actor and events caused by a group of actors. We now consider each in turn.
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A. Renewal Theory

Repetitive actions, that is repetitions of a process, result in a series of repetitive events.
The mathematical formalism used to describe this repetition of a process is Renewal The-
ory [Ross 1970]. �A renewal (counting) process is a nonnegative integer-valued stochastic
process that registers the successive occurrence of an event during a time interval, where the
times between consecutive events are positive, independent, identically distributed random
variables�[Taylor Karlin 1998].

For our purposes, we are primarily concerned with the repeated nature of the process and
shall relax the identically distributed property while retaining the positive and independent
properties. This generalization is consistent with both the mathematical theory of renewals
and the problem at hand. In the absence, as yet, of detailed knowledge of the architecture
of the rate processes, we want to retain as much generality as we can.

Renewal Theory counts the occurrence of repeated events whose evolution is described
in terms of probability functions, usually functions of time. Each event is referred to as a
renewal, and has a CDF that we shall designate as P (n) (t), where the parenthetical super-
script indicates the number of the renewal. Events are sequential �that is, the �rst renewal
occurs before the second, and so forth �and independent. The total number of renewals may
be �nite or in�nite, although the latter situation is often assumed for the former to simplify
the mathematics. We adopt this convention here, thus gaining a tacit assumption that the
ending of the renewal process, for any of the reasons above, is smooth and has no e¤ect on
the dynamics of the process representation.

The expected number of renewals by time t is expressed by the Renewal Function,
which is de�ned as

P (R) (t) �
1X
n=1

P (n) (t); (28)

where the parenthetical superscripted �R�indicates renewal. Because the CDF are assumed
to be continuously di¤erentiable, we may immediately de�ne aRenewal Density Function
(RDF) as

p(R) (t) �
1X
n=1

p(n) (t): (29)

Some theorists extend the summation to n = 0 by de�ning a zeroth renewal event with CDF
P (0) (t) � 1, from which we may deduce a PDF for this renewal of p(0) (t) = � (t), where � (t)
is a Dirac delta function.

As we have indicated, renewal theory describes repetitions of processes culminating in
events, counting the events in a probabilistic manner.1 These repetitions do not have to be

1Renewal theorists apparently do not like to talk about events. Since our interest is in (at least stochas-
tically) observable events and the processes that produce these events are presumed to be repeated and the
mathematics of renewal theory describes these processes and events well, we shall take the pragmatic but
impure approach of continuing to use the verbiage of renewal theory.
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identical and in many cases are not. We thus de�ne the PDF of the nth renewal as p(n) (t),
where the parenthetic subscript indicates the number of the renewal.2 From this, we may
write an evolution equation of a renewal in terms of the previous one, assuming the renewals
are Markovian (that is, each renewal only depends on the previous one,) as

P (n) (t) =

tZ
0

G(n)
�
P (n�1); ::

	
(t� t0) p(n) (t0) dt0 (30)

where G(n)f::gis the initiator of the initiation of the renewal; that is, it represents the prob-
ability that the process is initiated and may depend on the number of the renewal. Notice
that this integral is symmetric in interchange of the time dependence of the two components.
This will play an important role in subsequent developments. As a matter of convenience,
we shall also write integrals of this form using the shorthand

P (n) = G(n) � p(n): (31)

Two special situations are of note. First, the generator may be simple in form, depending
only on the preceding renewal. In this case, Equation (30) has the form

P (n) (t) =

tZ
0

P (n�1) (t� t0) p(n) (t0) dt0: (32)

We shall refer to this as a simple (or linear) renewal, although this terminology is somewhat
di¤erent from that in the literature. We note that because Equation (32) is linear, we may
immediately write the evolution equation of the corresponding renewal PDF as

p(n) (t) =

tZ
0

p(n�1) (t� t0) p(n) (t0) dt0: (33)

Second, if all of the renewal PDFs are identical (p(n) (t) = p (t)), then Equation (32)
further reduces to

P (n) (t) =

tZ
0

P (n�1) (t� t0) p (t0) dt0; (34)

with corresponding form of the PDF. We shall refer to this as a simple, uniform renewal.

Renewal Theory addresses the speci�c concept of rate through Blackwell�s Theorem. This
theorem states that

lim
t!1

P (R) (t+�t)� P (R) (t)! �t

�
; (35)

2Even in General Renewal Theory, all of the p(n) (t) are identical except the �rst. What we are doing
here is a generalization of the mathematics of renewal theory. Our calling this renewal theory is loose, but
handy. Our mathematical statement of renewal theory here is considerably more general than normally
given. In most cases, our application of this theory will be considerably simpler and congruent with the
usual statement.
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where: � �
R1
0
t0 p (t0) dt0 in the context of a simple, uniform renewal. The quantity 1 /�

is sometimes called the rate (of the renewal.) Within the de�nition of the renewal density
function, this reduces to

lim
t!1

p(R) (t)! 1

�
:

Recalling that Equation (30) is symmetric in interchange of the time dependence of the
two functional pieces of the convolution, we may also write a di¤erential equation form of
the evolution equations as

d

dt
P (n) (t) = G(n)

�
P (n�1); ::

	
(t) p(n) (0) (36)

�
tZ
0

G(n)
�
P (n�1); ::

	
(t� t0) d

dt0
p(n) (t

0) dt0:

If the renewal PDF is NED with rate �, then Equation (36) further reduces to

d

dt
P (n) (t) = �G(n)

�
P (n�1); ::

	
(t) � �P (n) (t) : (37)

This is an exceedingly useful form.

Two further considerations are worthy of note here. First, the combination of a set of
renewals is itself a renewal [Cox Smith 1954]. Second, renewals may be compounded.

Remark 1. Those who have had a course in renewal theory will likely be shaking their heads
at this point. This is not the standard textbook renewal theory for a couple of quite good
reasons. First of all, that textbook renewal theory isn�t quite general enough to satisfy our
needs for some of the problems that we want to solve. Second, the constraints that we need
to apply are somewhat di¤erent from those normally applied in the textbook presentations.
Yes, this is very di¤erent from vanilla renewal theory. It�s di¤erent enough that I might have
called it repetition theory except that then someone would have accused me of plagiarism.

B. Order Statistics

By the postulates of General Rate Theory, we may deal with events that are caused by a
collection of agents. The fact that we have a collection may mean that these agents interact
in some fashion. In particular, we know that this collectivity has an e¤ect on the probability
of the event even when the agents act independently. The means for considering this is Order
Statistics.

Where we used Basic Probability Theory and its extension Renewal Theory to describe
the dynamics of events caused by a single element, we use Order Statistics to describe the
behavior of the several as a group. The basic idea of Order Statistics is quite simple, but its

11



implementation can be somewhat di¢ cult, especially in terms of the basic calculations and
computations that need to be performed. For this reason, it is useful to consider pictures.

The notion of pictures, as we use it here, is taken from physics, speci�cally quantum
mechanics. In quantum mechanics, there are two pictures or interpretations of how the time
dependence of the mathematical representation is viewed. The composition of quantum
mechanics and indeed the nature of these pictures is not directly relevant here except for the
fact that the two pictures are, within the restrictions of their formulations, equivalent and
give identical observable results.

We want to consider two pictures of probability, which we may call the implicit and
explicit temporal representation pictures. The explicit picture is the more familiar. In this
picture, the probability functions are seen as dependent variables of (nominally) time. In the
explicit time picture, we operate directly on the time variable. In the implicit picture, we
operate directly on the probability functions as variables. This requires that the probability
functions (at least the CDFs) are monotonically increasing over time and that there is a
one-to-one correspondence between probability and time. This is not particularly di¢ cult,
but there is one idea that we must accept. In this picture, we may speak of the idea that a
probability may have moments (for example, expected value) and because of the one-to-one
relationship, this implies a time.

In particular, this also means that we must assume that the probability functions are
invertible. That is, if P (t) is the CDF that some (observable) event has occurred, then there
exists an inversion t (P ) that is the unique time (not necessarily �nite) when that probability
value occurs.

We may now take up our consideration of Order Statistics.

Consider a collection of N elements, each engaged in the same stochastic process (simple
or complex) that results in an observable event. We thus expect to observe N events, if we
observe for a su¢ ciently long time. Assuming we know the stochastic mechanics of individual
elements, given by a CDF P (t), then we naturally ask the question of when do the events
occur. (Or equivalently, What does the timing of a few events tell us about the collection?)
The way we address this is by adopting the implicit time picture and back into the problem.

Let us speci�cally ask the question, What is the probability that the rthevent has oc-
curred? If we write the unit function

Z = [P + (1� P )]N (38)

� 1;

then a simple application of the binomial theorem allows us to write this function as a series

Z =
NX
r=0

�
N

r

�
(1� P )N�r P r; (39)
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whose individual terms are the probabilities, within the collection environment, that the
rthevent has occurred. Thus, for explicitness,

Pr:N =

�
N

r

�
(1� P )N�r P r; (40)

is the probability that the rthevent out of N has occurred. Because the component proba-
bilities are time dependent, this probability is also time dependent.

Since the CDF exists and is time dependent, this implies that its PDF, its �rst derivative
with respect to time, exists as well. Taking this derivative is not completely straightforward.
Because the term (1� P )N�rrepresents the probability that the event has not occurred for
N�r of the elements, it does not contribute to the derivative. Thus, the PDF of the rthevent
is just

pr:N =

�
N

r

�
r (1� P )N�r P r�1p; (41)

where p � d
dt
P . This is admittedly a very terse presentation and the student is referred to

[David 1970] for details.

As before, this PDF is time dependent, and we may consider either the expected time
the event occurs in the usual explicit time picture or the expected value of the individual
element CDF in the implicit time picture. This demonstrates the value of the two pictures.
The expected time of the event is

tr:N =

1Z
0

t pr:N (t) dt (42)

=

�
N

r

� 1Z
0

t (1� P (t))N�r rP (t)r�1 p (t) dt;

which, given the explicit nature of the probability functions, is likely to be quite complicated.
The expected probability of the event is

P r:N =

1Z
0

P dPr:N (P ) (43)

=

�
N

r

� 1Z
0

P (1� P )N�r rP r�1dP

=
r

N + 1
;

which is considerably simpler. Of course, we must still compute the value of time, but this
is given by the assumption of inversion of the CDF, t

�
r

N+1

�
. Note that we have made use

of the di¤erential relationship p dt = dP and the integral expression
R 1
0
x��1 (1� x)��1 dx =

�(�) �(�)
�(�+�)

.
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VI. ON TO THE BASICS

The previous sections have been pretty heavy stu¤, so let�s cut through some of the
fog. What we are all about is �nding means for representing the counting of changes in
populations of discrete events in a continuous manner. Our starting point for this is Equation
(10),

d

dx
f =

�
d

dx
f

�
+
X
i

�fi � (x� xi);

which we shall refer to as the basic jump di¤erential equation. In most cases, we are going
to be dealing with situations where we start with discrete events and want to end up with a
continuous representation of these events (as shown in Figure 1.) As a result, in general the
continuous derivative term of this equation will be zero. Therefore, we are going to discard
this term and reduce this equation to

d

dx
f =

X
i

�fi � (x� xi): (44)

We note that even should we have continuous derivative contributions, it is simple to put
them back in, so we give up this modicum of generality with the understanding that we may
re-insert it at any time, and by seizing this speciality, we gather some degree of simplicity
and thereby clarity.

As a matter of course, we shall refer to the speci�c events as jumps because we presume
them to be impulsive. These jumps are represented by the terms of the series on the right side
of the above equations. We shall refer to the magnitudes of these jumps, �fi, as jump factors
or jump functions. The positions of the jumps or events are the xi, which we commonly take
to be times, but which may be spatial instead. Regardless, these jump positions or times
are taken to be fundamentally independent of the jump di¤erential equation although they
may result from some phenomena that are described by some conjugate body of theory or
experiment. To further clarify this, we rewrite this discrete event jump di¤erential equation
as

d

dt
f =

X
i

�fi �
�
t� ti

�
; (45)

to explicitly show that we shall generally consider the jump positions to be times.

It is somewhat useful in developing this theory of rates to introduce a bit of taxonomy
based on the nature of these jump factors/functions and times/positions. This taxonomy is
summarized in the Table 1.

The taxonomy di¤erentiates the situations of Deterministic and Stochastic behavior of
the jump functions and times by numbered type. Thus, for example, a type one jump
di¤erential equation is characterized by both the jump function and the jump times being
deterministic, while a jump di¤erential equation of type four is characterized by both jump
functions and jump times being stochastic. As we shall see, this taxonomy is presented
largely to provide a framework for presenting methods for building the continuous forms of
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the jump di¤erential equations from the discrete forms. The distinction being arbitrary, we
are erecting no barriers among di¤erential equations that may be of mixed type.

Table 1. Jump Taxonomy

Type Jump Function Form Jump Time Form
1 Deterministic Deterministic
2 Stochastic Deterministic
3 Deterministic Stochastic
4 Stochastic Stochastic

Our goal, as we have indicated, is to describe how we may start with discrete event
di¤erential equations, such as the above, and transform them into a continuous form. This
taxonomy gives us a means of presenting di¤erent methods of transformation.

As a rule, in this presentation, we shall assume that the jump functions do not depend
on the index of the jump; that is, they either depend only on time or are independent of the
jump index. As a result, we may usually separate the jump function from the series.

VII. TRANSFORMING THE DELTA FUNCTIONS

Let us now return to Equation (45), and as we have indicated, presume that the jump
functions do not depend on the index of summation. In this case, we may rewrite the right
side of the equation as X

i

�fi �
�
t� ti

�
= �f (t)

X
i

�
�
t� ti

�
; (46)

where we have assumed that the jump function is a function of time. As we shall see shortly,
this does not diminish the overall utility of the theory.

As we have also indicated, we want to �nd a means of transforming this discrete summa-
tion over events into some continuous representation. We now proceed to examine exactly
this. Our discussion, for simplicity and clarity, is limited to a single or sequence of event
times. Combinations of sets or sequences complicate the analysis but are ready extensions
of the theory.

A. Equally Spaced Deterministic Event Times

We start our presentation by considering a set of event times that are in�nite in number
and equally spaced. As a result, we may rewrite Equation (46) explicitly as

�f (t)
X
i

�
�
t� ti

�
= �f (t)

1X
i=0

�
�
t� ti

�
; (47)
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where we have arbitrarily assumed that the jumps begin at index zero. If we de�ne ti � i �t,
to assure that the events are evenly spaced in time, then this becomes

�f (t)
X
i

�
�
t� ti

�
= �f (t)

1X
i=0

� (t� i �t) : (48)

Let us now take the Laplace Transform of this equation

L

"
�f (t)

1X
i=0

� (t� i �t)
#
=

Z 1

0

e�st�f (t)

1X
i=0

� (t� i �t)dt; (49)

=
1X
i=0

Z 1

0

e�st�f (t) � (t� i �t)dt;

=
1X
i=0

e�si �t�f (i �t) ;

where we have had to pull the jump function back into the summation because it now
depends on event number courtesy of the form of the delta functions. Now, if the jump
function �f (t) is strictly polynomial (and preferably of low, positive order,) then this series
is summable, although for even reasonably small powers of i, this summation will be di¢ cult.
Accordingly, we would prefer not to take this approach to making the transformation from
discrete to continuous representation.

Accordingly, we limit ourselves to taking the Laplace Transform of just the series of delta
functions

L

" 1X
i=0

� (t� i �t)
#
=

1X
i=0

e�si �t; (50)

which we immediately see is summable as

L

" 1X
i=0

� (t� i �t)
#
=

1

1� e�s�t ; (51)

since Equation (50) is a simple geometric series [Gradshteyn Ryzhik 1980, Section 1.112
Equation 1, p. 21.].

As it stands, this result is not an improvement and has gotten us no closer to a continuous
representation. If however, we expand the exponential to �rst order,

e�s�t ' 1� s�t+HOT; (52)

then we may approximate Equation (51) as

L

" 1X
i=0

� (t� i �t)
#
' 1

s�t
; (53)
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which we may invert by inspection and obtain
1X
i=0

� (t� i �t) ' 1

�t
; (54)

which is equivalent to an in�nite time limit average (ala Blackwell�s Theorem as we shall use
subsequently in considering Type 3/4 jump di¤erential equations.) That is, we spread the
magnitude of the jumps over the entire duration of jumps.

This result transforms the jump di¤erential equation to a continuous form,

d

dt
f ' �f (t)

�t
: (55)

While this is a very useful result, it is limited in that we cannot extend the method to higher
order approximations of the exponential. Accordingly, let us now consider that instead of
the �rst jump occurring at the origin, that it occurs after an increment of time. Thus, we
rewrite Equation (47) as

�f (t)
X
i

�
�
t� ti

�
= �f (t)

1X
i=1

�
�
t� ti

�
: (56)

We now follow the same method as before, assuming equal increment times, and obtaining

L

" 1X
i=1

� (t� i �t)
#
=

1X
i=1

e�si �t (57)

=
1

1� e�s�t � 1

=
e�s�t

1� e�s�t ;

=
1

es�t � 1 :

This may be expanded as before. A �rst-order expansion gives us the same result as before,
Equation (53). Unlike that expansion, which was limited to �rst order, we may expand
Equation (57) to higher order. Thus, an expansion to second order gives us

L

" 1X
i=1

� (t� i �t)
#
' 1

s�t+ s2�t2

2

: (58)

This can be separated using a partial fraction expansion, and inverted by inspection, giving
us

1X
i=1

� (t� i �t) ' 1

�t

�
1� e�2t/�t

�
: (59)

We immediately note that in the limit t!1, this result becomes identical to Equation 54.
Similarly, it gives us a continuous representation rate di¤erential equation

d

dt
f ' �f (t)

�t

�
1� e�2t/�t

�
: (60)
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As a means of comparison, we plot the rate functions arising from the �rst three order
expansions of the LT of the delta function series, Equation (57), in Figure 2. The third-
order expansion is actually negative out to a time of about 0.7, but this is clipped in the
plot. It may readily be seen that the detail of representation of the delta functions increases
with expansion order. In a similar manner, we present the integrals of the �rst two order
expansions versus the step trajectory in Figure 3. We may readily see that the type of
�smoothing" we displayed earlier in Figure 1 occurs here, but we are able to see greater
detail of the e¤ects of expansion of the LT of the event delta function series. The �rst-order
expansion provides a smooth representation that hits the vertical risers of the �steps," while
the second order expansion hits at the mid points of the risers.

Figure 2. Comparisons of First Three Order Expansions of Series of Event Delta Functions

Before proceeding, it seems worthwhile to make a comparison of this method of devel-
oping the continuous representation by expansion of the Laplace Transform of the discrete
representation with a more direct method. The direct method we shall consider is based on
the expression of delta functions as Gaussians, Equation (4). As already noted, the Gaussian
is a weak delta function, which means that in the limit � ! 0, the Gaussian acts like a strong
(or Dirac) delta function. Our approach here is the opposite of this. Instead of making � get
smaller, we let it get larger. This is shown in Figure 4. As sigma is allowed to increase, the
discrete Gaussians coalesce. Thus, we obtain the same type of continuous representation.
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Figure 3. Comparisons of Integrals of First Two Order Expansions of Series of Event Delta
Functions With Actual Step Trajectory

B. Unequally Spaced Deterministic Event Times

The problem we encounter in dealing with unequally spaced3 event times is that the
transformation techniques used above to go from discrete to continuous representation are
not generally applicable. To illustrate this, we return to Equation (56)

�f (t)
X
i

�
�
t� ti

�
= �f (t)

1X
i=1

�
�
t� ti

�
;

where we have assumed the jump function to be independent of index.

As a result, we need only consider the series of delta functions, whose Laplace Transform
is

L

" 1X
i=1

�
�
t� ti

�#
=

1X
i=1

e�sti : (61)

By assumption there is no simple linear relationship between index and event times, and
we cannot simply sum this series as we did before. If we examine the event times and

3Deterministic. By their nature, stochastic event times are unevenly spaced but are treated in a di¤erent
manner.
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Figure 4. E¤ect of Increasing Sigma

�nd that the di¤erence in adjoining event times is almost constant, then we may be able
to approximate them as evenly spaced, or if the di¤erence is almost constant except for a
disordered but small amount, we might be able to approximate them as evenly spaced with
a small stochastic component that can the transformed using the techniques described in the
next subsection.

Generally however, we cannot sum Equation (61) in a simple manner so we turn rather
quickly to transforming the series term by term using the techniques described in the previous
subsection. Thus,

1X
i=1

e�sti=

1X
i=1

1

esti
(62)

'
1X
i=1

1

1 + sti

=

1X
i=1

1

ti

1
1
ti
+ s

;
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which we may invert as

L�1

" 1X
i=1

e�sti

#
'

1X
i=1

1

ti
e
� t
ti : (63)

Although elegant, this su¤ers from being tied to the origin. As a result, density of rate
is often too bunched at short times. This is illustrated in Figure 5 where we compare this
approximation with a set of uneven event times. The event times in this case are generated
from the deciles of a Gaussian with mean and standard deviation selected to assure all the
event times are nonnegative. The di¤erent heights of the delta functions are an artifact of
the small standard deviation (� = 0:01) and the calculation increment. The general failure
of the approximation to capture the behavior of the events is obvious in this case.

Figure 5. Comparison of Uneven Event Times Delta Functions And Term-By-Term LT
Expansion

As a result, we are often forced on the more di¢ cult task of taking some representation
of the delta function, relaxing its strength (increasing its weakness), and looking for some
pattern of behavior that can be exploited in forming a continuous (approximate) represen-
tation. For example, if we take the same event times as used in Figure 5, represent the delta
functions as Gaussians (which we did in that �gure for plotting purposes anyway,) and allow
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the standard deviation (�) to increase, then we �nd a pattern coalescing. This is shown in
Figure 6.

Figure 6. Comparison of Uneven Event Times as Gaussians of Di¤erent Standard Deviations

We �rst note that to avoid hiding details because of maximum amplitude changes, we
have plotted the same representation of the delta functions of Figure 5 on one vertical axis
and the other two representations on a second vertical axis. The amplitude variation of the
small standard deviation representation is again an artifact of calculation. When we relax
the standard deviation from 0:01 to 0:1, then we see the emergence of an envelope with the
peaks sticking through. If we further relax the standard deviation to 0:3, then the curve
smooths and we recognize it as a Gaussian, which is what we should expect given the event
times being the deciles of a Gaussian.

C. Stochastic Event Times

As indicated, the times of deterministic events are represented by strong (Dirac) delta
functions and we form the continuous representation by weakening them in some manner.
These need no further consideration at this point. The behavior of the stochastic events
does require development, however. Being stochastic, we intuit that the event times are
represented by delta functions that are inherently weak in some sense. To examine this, we
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rewrite our jump di¤erential equation, Equation (44), with probability as the independent
variable. Thus,

df (t) =
X
i

�fi �
�
P � P i

�
dP (t) : (64)

This telegraphs that we are going to use the implicit temporal representation picture, at
least initially.

Now consider a collection of N elements. These elements cause events that de�ne the
solution f (t) of the di¤erential equation. We start with the restriction that each element
causes (at most) one event. Under this restriction, basic probability theory de�nes the CDF-
PDF of the event caused by an individual element. Thus, P (t) represents the cumulative
probability that the event caused by an individual element has occurred.

Because the elements are parts of a collective, the individual events are described by
order statistics. As a result, the PDF of the rth of N events is given by Equation (41), which
we now write as

pr:N (t) dt =

�
N

r

�
(1� P )N�r rP r�1dP; (65)

where it may be noted that the right side is explicitly a function of time and the left side is
explicitly a function of individual element probability, and concentrate on the non-di¤erential
portion. Write this portion as

pr:N (P ) =

�
N

r

�
(1� P )N�r rP r�1: (66)

Let us now examine this function of the individual element CDF. We plot selected functions
in Figure 7. These functions clearly have the appearance of weak delta functions in the sense
of our earlier discussion, but this needs to be demonstrated in the context of Equation (5).
To do this, we return to Equation (66), and rewrite it somewhat as

pr:N (t) dt =

�
N

r

�
(1� P )N�r+1 rP rd ln

�
P

1� P

�
: (67)

We select the variable y = ln
�

P
1�P

�
for two reasons. First, it gives us natural limits of �1,

and second, as we shall see, it reproduces the expected values of Equation (41). Removing
the di¤erential, we write the quantity as

pr:N

�
ln

�
P

1� P

��
=

�
N

r

�
re(N�r+1) ln(1�P )+r ln(P ): (68)

23



Since we know these functions, at least in the P picture, are peaked, we may expand the
exponent in a McWheeny or (pseudo) Saddle Point Expansion. This is just a Taylor series
expansion where the expansion point is the extremum, normally the maximum. By this, we
mean that we expand the exponent in y = ln

�
P
1�P

�
and set the �rst derivative to zero. This

determines the expansion point. For simplicity of presentation, we are only going to keep
the �rst two derivative terms, recognizing that this results in some error, but we only want
to demonstrate the weak delta function behavior of this class of functions.

Figure 7. Order Statistics PDF Examples

We now write out the expansion explicitly to second order,

z = (N � r + 1) ln (1� P ) + r ln (P ) ; (69)
d

dy
z =

@

@ ln
�

P
1�P

�z
=

dP

d ln
�

P
1�P

� d
dP
z;

= P (1� P )
�
(N � r + 1) �1

1� P +
r

P

�
= � (N + 1)P + r;

d2

dy2
z =

@

@ ln
�

P
1�P

� d
dy
z

= � (N + 1)P (1� P ) :
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The third and fourth derivatives are

d3

dy3
z = � (N + 1)P (1� P ) (1� 2P ) ; (70)

d4

dy4
z = � (N + 1)P (1� P ) (1� 2P ) (1� 3P ):

The pattern is obvious. We note that at some point the derivative changes sign (depending on
the value of P ) and thereafter becomes oscillatory. This series thus also becomes uniformly
convergent and assures that the behavior we are capturing in this two-term expansion is
trustworthy.

If we now require the �rst derivative to be zero, we obtain the expansion point P = r
N+1

,
which is just the expected value of the probability, Equation (43). Substitute this into
Equation (70),

z = (N � r + 1) ln
�
1� r

N + 1

�
+ r ln

�
r

N + 1

�
; (71)

= (N � r + 1) ln
�
N � r + 1
N + 1

�
+ r ln

�
r

N + 1

�
;

d

dy
z = � (N + 1) r

N + 1
+ r;

= 0;

d2

dy2
z = � (N + 1) r

N + 1

N � r + 1
N + 1

;

= �r (N � r + 1)
N + 1

;

which gives us the expansion

z (y) ' (N � r + 1) ln
�
N � r + 1
N + 1

�
+ r ln

�
r

N + 1

�
(72)

�r (N � r + 1)
N + 1

�
y� ln

�
r

N�r+1
��2

2
+O

�
y3
�
:

If we now de�ne y � ln
�
N�r+1
N+1

�
; �2 � N+1

r(N�r+1) , then we may rewrite Equation (72) as

f (x) ' (N � r + 1) ln
�
N � r + 1
N + 1

�
+ r ln

�
r

N + 1

�
� (y�y)

2

2�2
; (73)

and thus rewrite Equation (68) as

pr:N (y) =

�
N

r

�
re(N�r+1) ln(

N�r+1
N+1 )+r ln(

r
N+1)�

(y�y)2

2�2 : (74)
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This equation may be more explicitly rewritten and rearranged as

pr:N (y) =
N ! r

r! (N � r)!
(N � r + 1)N�r+1 rr

(N + 1)N+1
e�

(y�y)2

2�2 : (75)

To make factors cancel correctly, we further rewrite this as

pr:N (y) '
(N + 1)! r (N � r + 1)
(N + 1) r! (N � r + 1)!

(N � r + 1)N�r+1 rr

(N + 1)N+1
e�

(y�y)2

2�2 ; (76)

and make use of Stirling�s Approximation for the factorial

n! ' nn+1=2e�n
p
2�: (77)

Now consider just the terms on the right side of Equation (76) leading the exponential,

(N + 1)! r (N � r + 1)
(N + 1) r! (N � r + 1)!

(N � r + 1)N�r+1 rr

(N + 1)N+1
(78)

' (N + 1)N+1+1=2 e�N�1r (N � r + 1)
p
2� (N + 1) rr+1=2e�r (N � r + 1)N�r+1+1=2 e�N+r�1

(N � r + 1)N�r+1 rr

(N + 1)N+1

=
(N + 1)1=2 e�N�1r (N � r + 1)

p
2� (N + 1) r1=2e�r (N � r + 1)1=2 e�N+r�1

=
(N + 1)1=2 r (N � r + 1)

p
2� (N + 1) r1=2 (N � r + 1)1=2

=
1p
2�

r
r (N � r + 1)

N + 1

=
1p
2��

:

This reduces Equation (76) to

pr:N (y) '
1p
2��

e�
(y�y)2

2�2 ; (79)

which we immediately recognize as a Gaussian. The standard deviation � � O
�

1p
N

�
so

that � ! 0 weakly as N !1. This satis�es the de�nition of a weak delta function, and we
may thus rewrite Equation (68) as

pr:N (t) dt = � (y � y) dy; (80)

in this weak sense. The relationship of the Saddle Point Expansion to the original functions
is shown in Figure 8. The agreement is inexact because we truncated the expansion. It is
also worthwhile to note that this expansion is valid for N > 0. This is important since it
allows us to address collections of cause agents of population one.
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Figure 8. Order Statistics PDFs and Their Saddle Point Expansions

VIII. RATE DIFFERENTIAL EQUATIONS

We now complete the derivation of the stochastic rate di¤erential equations, review the
deterministic rate di¤erential equations for evenly space event times, and compare the two.

A. Stochastic Rate Di¤erential Equations

We now combine this result with our jump di¤erential Equation (64),

df (x) =
X
i

�fi � (x� xi) dx; (81)

=) df (t) =
NX
r=1

�fr pr:N (t) dt:

The di¤erential equation is now a function of time, and the summation over jumps has be-
come explicit. This is the basic stochastic rate di¤erential equation (except for the piecewise
continuous derivative term.) Although, we do not, at this point in the development, know
the explicit form of the jump function, some further elaborations are still possible.

When the jump function is not explicitly a function of i, we may pull the jump function
out of the summation. Further, if we substitute the exact expression for the order statistics
PDF, Equation (65), we obtain

df (t) = �f (t)
NX
r=1

�
N

r

�
(1� P )N�r rP r�1p dt: (82)
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Writing out the binomial coe¢ cient and canceling the r term yields

df (t) = �f (t)

NX
r=1

N !

(r � 1)! (N � r)! (1� P )
N�r P r�1p dt: (83)

We now make the change of summation index s = r � 1, so that Equation (83) becomes

df (t) = �f (t)

N�1X
s=0

N !

s! (N � s� 1)! (1� P )
N�s�1 P sp dt (84)

= �f (t)Np

N�1X
s=0

(N � 1)!
s! (N � s� 1)! (1� P )

N�s�1 P s dt

= �f (t)Npdt:

This collapse results from recognition that the middle representation of Equation (84) is
itself a Binomial Expansion. If we now recognize, based on our earlier development of the
real-valued binomial expansion, that N may be time dependent and that the individual
element PDF is time dependent, we may write this as

d

dt
f (t) = �f (t) p (t) N (t) : (85)

This is a general result for the case when the jump function does not depend on the event
number.

Before concluding this section, two other cases need to be considered. The �rst is when
the jump process is repeated and described by renewal theory. In this case, we make use of
the independence of the individual renewals and extend it to the order statistics. Equation
(81) becomes

df (t) =
1X
n=1

NX
r=1

�f (n)r p
(n)
r:N (t) dt; (86)

where �f (n)r and p(n)r:N (t) are now the jump function and order statistic PDF, respectively of
the rth event of N of the nth renewal or repetition. If the jump function does not depend on
event number, but does depend on renewal number, then this equation may be written as

df (t) =
1X
n=1

�f (n)
NX
r=1

p
(n)
r:N (t) dt: (87)

This equation collapses as before to give

df (t) =
1X
n=1

�f (n)p(n)N dt: (88)

If the jump function depends on neither event nor renewal number, then this becomes

df (t) = �f (t)

1X
n=1

p(n)N dt; (89)
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which reduces to
df (t) = �f (t) p(R)N dt: (90)

This is the form that we shall use subsequently for developing many particular rate di¤erential
equations. It should be noted that this is a special case of the more general result.

The second case that needs to be developed is for N = 1. As previously noted, the
(pseudo) Saddle Point Expansion is valid even for this limiting case, so we may return to
Equation (85) and rewrite it as

df (t) = �f1 p1:1 (t) dt; (91)

= �f p (t) dt:

We note immediately that the jump function is not dependent on event number because there
is only one event. If there are multiple events, however, and the jump process is repeated,
this di¤erential equation becomes

df (t) =
1X
n=1

�f (n) p(n) (t) dt: (92)

Because we will be making a transformation from a discrete view to a continuous view, the
values of our trajectories will be transformed from integer valued to non-integer (nominally
real) valued. It is thus useful to examine the behavior of the order statistics CDFs when the
number of elements in the collection is non-integer.

B. Extension to Non-Integer Collections

As already discussed, Equation (40), the probability that the rthevent among N is given
by a simple term from a binomial expansion,

Pr:N (t) =

�
N

r

�
P (t)r [1� P (t)]N�r; (93)

where P (t) is the probability that the event has occurred by time t for an individual element
in isolation. These probabilities are inherently normalized,

NX
r=0

Pr:N (t) =

NX
r=0

�
N

r

�
P (t)r [1� P (t)]N�r (94)

= [P (t) + [1� P (t)]]N

= 1;

from their basic formulation, so this expression is a bit of a tautology. It means, however, that
so long as N has integer value, the collection of individual event probabilities is normalized
for all values of time regardless of any evolution.
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At this point, we lean forward and anticipate ourselves. Speci�cally, we want to examine
what happens when we allow N to have non-integer (real) values. We may proceed by
considering the function

ZR = [P (t) + [1� P (t)]]R; (95)

= 1;

which is the real valued equivalent of Equation (38). The exponent R is explicitly non-
integer. For convenience, we adopt the notation

x � P (t) ; (96)

y � [1� P (t)];

so that we may write
ZR = [x+ y]

R: (97)

This may appear to be an excessive distinction, but it may be recalled that this is exactly
the same type of procedure we used in calculating the derivative above. It is also a common
and useful distinction in manipulating these expressions [Mohling 1982].

We expand this function in a Maclaurin series about x = 0, giving us (in a naive textbook
fashion),

ZR =
1X
k=0

@kZR
@xk

����
x=0

xk

k!
: (98)

The derivatives may be similarly computed as

@kZR
@xk

����
x=0

=

"
k�1Y
l=0

R� l
#
yR�k: (99)

We note immediately that for values of k > [R], where [] indicates the integer value of the
argument, the exponent of y becomes negative, and the sign of the product begins to oscillate.
The series, Equation (98), thus becomes oscillatory beyond this value of k. Further, for this
part of the series, the product will grow in magnitude slower than k!; so that each succeeding
term not only oscillates, but also gets smaller.

This series, Equation (98), is thus Uniformly Convergent and may be adequately approx-
imated as

ZR '
[R]X
k=0

@kZR
@xk

����
x=0

xk

k!
; (100)

since the higher terms are oscillatory and largely cancel. If we make use of the Gamma
function, we may rewrite this as

ZR '
[R]X
k=0

� (R + 1)

� (R + 1� k)y
R�kx

k

k!
: (101)
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This is the real number equivalent of the Binomial Theorem. In a like manner to the previous,
we may write the PDF of the kth event as

pk:R =
� (R + 1)

� (R + 1� k)y
R�k xk�1

(k � 1) ! ; (102)

by exactly the same type of development as led us to Equation (41). From this, we may
make the following observations:

1. The expected value of the probability of the kth of R events is well de�ned in the same
manner as Equation (43);

2. The delta function behavior of the PDF of the kth of R events is well de�ned in the
same manner as Equations (65 through 80); and

3. The summation of the PDF of the kth of R events, k = 1:: [R] (actually 1), is well
de�ned and identical in form to Equations (82 through 85). This latter follows from
the derivation of Stirling�s Approximation from the Gamma function with the factorial
as a special case.

Thus, this approximation not only has components that look like the purely integer
index form but also has comparable expansion properties. Based on these observations, the
behavior of the �Order Statistics�for non-integer and integer populations is su¢ ciently close
that we may treat them identically. The results derived above are happily applicable to real
as well as integer numbers.

C. Deterministic Rate Equations

It may be recalled that meaningful general transformations could only be developed for
evenly spaced deterministic event times. We limit our immediate discussion to such, noting
that if the event times are suitably disordered, or have some pattern, then they may be
represented by means akin to those just developed for stochastic events.

For single sequences (sets) of evenly spaced deterministic event times, where the event
jump functions are independent of index, we identify two cases. In the �rst case, events begin
in index zero, that is, at the temporal origin, and give rise to a rate di¤erential equation,

d

dt
f ' �f (t)

�t
; (103)

where: �f (t) = the jump function, and 1 /�t = the continuous representation (approxima-
tion) of the jumps that occur with interval �t. In the second case, the jump events begin
with index one, and give rise to a rate di¤erential equation,

d

dt
f ' �f (t)

�t

�
1� e�2t/�t

�
: (104)

We note that the Equation (104) asymptotically reduces to the form of Equation (103) as
time increases.
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D. Comparison of Deterministic and Stochastic Rate Di¤erential Equations

We have already noted that for stochastic events, the rate di¤erential equation takes the
form

d

dt
f (t) = �f (t) p (t) N (t) ; (105)

when the events (jumps) are not repetitive and

d

dt
f (t) = �f (t) p(R) (t) N (t) ; (106)

when the events are repetitive. In some cases, deterministic and stochastic rate di¤erential
equations may take the same form.

The �rst case of this is the most obvious. If a stochastic process is uniformly distributed
on [t1; t2], then p (t) = 1 /(t2 � t1) ; t1 � t � t2, and Equation (105) reduces to

d

dt
f (t) =

�f (t)

t2 � t1
N (t) ; t1 � t � t2; (107)

which is of the same form as Equation (103).

Next, if a repeated process (described by Renewal Theory) is uniform and simple with
NED distribution p (t) = � exp (��t) ; � = 1/hti ; hti =

R1
0
t0 p (t0) dt0, then p(R) (t) = �,

and this reduces Equation (106) to

d

dt
f (t) =

�f (t)

hti N (t) ; (108)

which is also identical in form to Equation (103). Thus, in both of these cases, we have
stochastic processes with rate di¤erential equations that are identical to deterministic rate
di¤erential equations.

Lastly, consider a repeated process that is alternating in two NED, p (t) = � exp (��t),
and q (t) = � exp (��t). The renewal density function of this process is

p(R) (t) =
��

�+ �

�
1� e�(�+�)t

�
: (109)

This allows us to write Equation (106) as

d

dt
f (t) =

��

�+ �
�f (t) N (t)

�
1� e�(�+�)t

�
; (110)

which is of the same form as Equation (104).

While NED renewals are essentially the simplest that may be formed, they are nonetheless
quite common because of the frequency of occurrence of NED processes in nature. Regardless,
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we must acknowledge that the form of a rate di¤erential equation does not uniquely indicate
that the process it represents is either stochastic or deterministic.

IX. DETERMINISTIC EXAMPLES

We now essentially change our approach from theory to example. The theoretical basis
of Rate Theory having been established, it now becomes useful to consider several examples
of how Rate Theory may be applied to the development of Rate Di¤erential Equations. In
this �rst section of examples, we concentrate on examples of deterministic rate processes,
those of Type 1.

A. Pong

Our �rst example is based on the computer game Pong. This game, one of the earliest,
is actually a very complicated mechanics problem. In essence, it is the Classical (as opposed
to Quantum) Mechanical one-dimensional particle-in-the-box problem.

The problem consists of the following: a one-dimensional box of dimension d contains a
single particle moving with speed of magnitude u0. The box is assumed to have in�nitely
more mass than the particle. Collisions between box walls are elastic and lossless.

As a result, both energy and momentum are conserved. The particle moves in a closed
trajectory (an orbit on [0; d]) between the two walls with speed (velocity) of �u0. Nor-
mally, we should not apply Rate Theory to mechanics problems since the formalisms of
Mechanics; Newton�s equations; or the derivative operations of the Lagrangian, Routhian,
or Hamiltonian functions; provide a direct means of developing the di¤erential equations of
mechanics [Goldstein 1950]. However, because this problem has nonholonomic constraints,
it is useful to develop a Rate Theory example, approximate though it is, to show a special
application of the theory.

Despite the nonholonomic constraint, this problem is so simple that an algorithmic so-
lution can be written trivially. If we de�ne the transit time of the particle from one side of
the box to another as �t, then we have

�t =
d

u0
: (111)

It is then useful to de�ne the integer j� as

j� = integer

�
u0t

d

�
; (112)

where t = the time since the particle satis�ed the conditions x (0) = 0; u (0) = u0, where
x (t) ; u (t) are, respectively, the position and speed of the particle at time t. These are what
we might consider to be initial conditions. In this context, j� is just the number of times
that the particle has bounced o¤ the walls since the initial time.
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From this we may write that

x (t) =

�
u0 (t� j��t) ; j� even
d� u0 (t� j��t) ; j� odd

; (113)

which is indeed the solution of the motion of the particle, albeit a piecewise solution.

If we return to Equation (44),

d

dx
f =

X
i

�fi � (x� xi);

then we may write the rate di¤erential equation of the particle�s speed as

d

dt
u =

X
j

�uj �
�
t� tj

�
: (114)

We have switched indices from i to j for reasons that will be abundantly clear shortly.

The jump times tj are the times when the particle collides with one or other of the walls,
which is just

tj = j�t: (115)

When the collision occurs, the speed of the particle switches from positive to negative, so we
may write the jump function in a still general form as

�uj =(�1)j �u; (116)

where we have left the magnitude of the jump unspeci�ed to allow us to correct for the
approximation. This is a case where the jump function does depend on index but, as we
shall see, is simple enough (that is, linear) that we may treat it in closed form.

Before proceeding, it is useful to recall the identity

�1 = e��i; (117)

where i �
p
�1, which illuminates our need to change index notation. This identity allows

us to rewrite Equation (116) as
�uj = e

�ij�u; (118)

which in turn allows us to write the jump terms as

X
j

�uj �
�
t� tj

�
=

1X
j=1

e��ij�u � (t� j�t) ; (119)

= �u
1X
j=1

e��ij � (t� j�t) :
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We may now take the Laplace Transform of the right side of Equation (119) as

L

"
�u

1X
j=1

e�i(j+1) � (t� j�t)
#
= �u

1X
j=1

e�sj�te��i(j+1); (120)

= �u

1X
j=1

e�sj�te��ij:

This series is exactly summable, yielding

1X
j=1

e�sj�te��ij =
1

es�t��i � 1 ; (121)

which we now expand to �rst order using the techniques described previously for evenly
spaced event times as

1X
j=1

e�sj�te��ij ' 1

s�t� �i: (122)

At this point, we resolve the sign ambiguity by using each one equally

1X
j=1

e�sj�te��ij ' 1

2

�
1

s�t+ �i
+

1

s�t� �i

�
; (123)

=
s�t

s2�t2 + �2
:

We now rewrite this as
1X
j=1

e�sj�te��ij ' 1

�t

s

s2 + �2

�t2

; (124)

which we immediately (after consulting a Laplace Transform Table) recognize as

L�1

"
1

�t

s

s2 + �2

�t2

#
=
1

�t
cos

�
�t

�t

�
: (125)

This allows us to rewrite Equation (119) as

�u
1X
j=1

e��i(j+1) � (t� j�t) '� �u
�t

cos

�
�t

�t

�
; (126)

and thus the rate di¤erential equation becomes

d

dt
u '�u

�t
cos

�
�t

�t

�
: (127)
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Before proceeding, it is useful to replace �t with its de�nition, Equation (111), which
now gives us

d

dt
u '�u u0

d
cos

�
�u0t

d

�
: (128)

We now integrate this directly to obtain

u (t) ' �u u0
d

d

�u0
sin

�
�u0t

d

�
+ C (129)

=
�u

�
sin

�
�u0t

d

�
+ C:

Since the trajectory is closed, we can view this as an orbit and thus anticipate that the
constant of integration (C) here is zero. Then, since u (t) = dx (t) /dt , we may integrate
again to obtain the approximate trajectory as

x (t) ' ��u
�

d

�u0
cos

�
�u0t

d

�
+ C 0 (130)

= ��ud
�2u0

cos

�
�u0t

d

�
+ C 0:

We now apply boundary conditions that the particle start at one side of the box initially
(x (0) = 0) and be at the opposite side of the box an appropriate time later (x (�t) = d).
This gives us

C 0 � �ud

�2u0
= 0; (131)

C 0 +
�ud

�2u0
= d:

Simple elimination gives us

C 0 =
d

2
; (132)

and

�u =
�2u0
2
: (133)

This gives us a speed jump factor that is �2 /4 times what we should have expected based
on purely mechanical considerations. The resulting approximate rate trajectory is

x (t) ' d

2

�
1� cos

�
�u0t

d

��
; (134)

which we compare to the exact trajectory, Equation (113), in Figure 9. The agreement is
quite good, largely because of the boundary conditions used.
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Figure 9. Comparison of Exact and Rate Pong Trajectories

B. Bouncing Ball

We are all familiar with the trajectory of a ball that is thrown or dropped, follows a
ballistic trajectory impacts the ground, bounces, follows another ballistic trajectory� albeit
usually a bit smaller� impacts and bounces again, and so forth. If we neglect air resistance,
which is proportional to either the speed, or the square of the speed, [Marion 1965] and
which is small if the speed of the ball is low, then the trajectory of each bounce is given by

x (t) =
�
xot; (135)

z (t) =
�
z0t�

1

2
gt2;

where: x; z are the horizontal, vertical coordinates, t is parametric time,
�
xo;

�
z0 are the initial

(t = 0 measured from the instant when the bounce commences) velocity components, and g
is the acceleration due to gravity. The problem, of course, is writing component di¤erential
equations (vector di¤erential equation) for the entire trajectory. We approach this problem
using our rate theory formalism. As with the Pong example, both jump magnitudes and
times are deterministic.
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Most discussion of collisions in elementary textbooks is devoted to elastic collisions where
energy and momentum are conserved. As we know from observing bouncing ball trajectories,
the collisions of the ball with the ground are inelastic since the ball eventually comes to rest.
Every time the ball hits the ground, it loses energy. (Unless the ball is made out of Disney
Flubber R, in which case, it gains energy; regardless the formalism is the same.) Four
mechanisms may be identi�ed for this:

1. The ball loses a �xed increment of its energy with each collision;

2. The ball loses a �xed fraction of its energy with each collision;

3. The ball�s momentum is decreased by a �xed increment with each collision; or

4. The ball�s momentum is decreased by a �xed fraction with each collision.

This taxonomy, while simplistic, follows from the form of drag loss. We now consider
each of these losses in turn.

1. Fixed-Energy Increment

From our development of rate theory methodology, we may write velocity component
rate equation primitives as

d

dt

�
x =

X
j

�
�
xj� (t� � j) ; (136)

d

dt

�
z =

X
j

�
�
zj� (t� � j)� g;

where: �
�
xj;�

�
zj are the horizontal, vertical velocity component jumps and � j are the jump

times. The jump times are when the collisions occur and are obviously the same for both
components.

We note that while energy and momentum are not conserved during the collisions, they
are conserved during the bounces since we are neglecting air drag. Further, mass may be
assumed to be conserved. If we adjust the origin of the local coordinate system to each
successive collision point, we may place the potential energy zero at that origin so long as
the overall collision surface is level. Accordingly, we may write the energy at collision as

E =
m

2

�
�
x
2
+

�
z
2
�
; (137)

where m is the mass of the ball.
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If we now consider this in a circular coordinate system (r; �) then immediately around

the collision,
����r���� ����r������, so we may approximately reduce Equation (137) as

E ' m

2

�
r
2
: (138)

With this equation, even though energy and thereby momentum are not conserved, we
may take momentum as proportionally conserved. That is, the magnitude of momentum
is changed in the collision, but the ratios of the momentum components are taken to be
conserved. As a result, if we designate the component value just before, after the collision
with subscripted minus, plus, we may write proportional conservation relations,

�
x�
�
r�

=

�
x+
�
r+
; (139)

�
z�
�
r�

= �
�
z+
�
r+
:

The sign change re�ects the ball going from moving down to up.

We may invert Equation (138) as

�
r '

r
2E

m
; (140)

which allows us to rewrite Equations (139) as

�
x+ =

�
x�

�
r+
�
r�

(141)

=
�
x�

s
E+
E�
;

�
z+ =

�
�z�

s
E+
E�
:

This gives us a means of calculating the jump magnitudes.

Before proceeding with that, however, it is �rst useful to number the bounces and des-
ignate the energy of each bounce as Ej; j = 0::; where the zeroth bounce is the initial one.
By Equation (137), the initial energy is just

E0 =
m

2

�
�
xo
2
+

�
z0
2
�
; (142)

and the other energies are just
Ej = E0 � j�E; (143)
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where �E is the constant energy loss per bounce. Quite obviously, the ball cannot have
negative energy, so either the energy loss is an integer multiple of the initial energy or the
last collision reduces the energy to zero. Either case de�nes the number of bounces.

Since we are neglecting air drag, as we have already indicated, the ball�s trajectory
between collisions is conservative. From this we know that the horizontal velocity component
is constant over the trajectory element, and the vertical velocity component at the beginning
of the element is equal in magnitude and opposite in sign of the component at the end of the
element. Let us now designate the velocity components at the beginning of each bounce or
trajectory element as

�
xj;

�
zj. With this, we may now combine the momentum proportionality

equations, Equations (141) with these de�nitions of energy and velocity components to write
equations that relate each bounce to the preceding one

�
xj =

�
xj�1

s
Ej
Ej�1

; (144)

�
zj =

�
zj�1

s
Ej
Ej�1

:

Note that the minus sign in the vertical component relationship disappeared because of the
de�nition of the components.

If we iterate these relationships, we may arrive at a general form

�
xj =

�
x0

r
Ej
E0
; (145)

�
zj =

�
z0

r
Ej
E0
:

We may now use the de�nition of the element energies, Equation (143) to rewrite these as

�
xj =

�
x0

r
E0 � j�E

E0
; (146)

�
zj =

�
z0

r
E0 � j�E

E0
:

Since we are ignoring air drag, we may solve for the collision time increments using the
vertical component of Equations (135). This gives us

�� j =
2
�
zj�1
g
: (147)

We rather obviously reduce this to

�� j =
2
�
z0
g

s
E0 � (j � 1)�E

E0
; (148)

= � 1

s
E0 � (j � 1)�E

E0
;
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since � 0 � 0. This allows us to calculate the jump or collision times as

� j =

jX
k=1

�� k (149)

= � 1

jX
k=1

s
E0 � (k � 1)�E

E0
:

This series is not obviously summable.

We are now in a position to calculate the velocity component jumps. The horizontal
component jump is straightforward,

�
�
xj =

�
xj �

�
xj�1: (150)

This can be slightly elaborated by substituting Equation (146)

�
�
xj =

�
x0

24rE0 � j�E
E0

�

s
E0 � (j � 1)�E

E0

35 : (151)

The vertical component jump is similar,

�
�
zj =

�
zj +

�
zj�1; (152)

except for the sign change resulting from the change in direction of vertical motion across
the collision. Elaboration follows directly and we shall not belabor the obvious.

At this point, we close our discussion of this example. Fundamentally, the presence of
the index of summation under the radical precludes analytical summation of the series in the
jump di¤erential equations, Equations (136). Since analytical forms for the event times and
jump magnitudes have been developed, numerical computation of these is straightforward,
and thereby numerical simulation of the jump di¤erential equations. Elaboration of this is
outside the scope of this presentation.

2. Fixed-Energy Fraction

We now change to a loss representation where the ball�s energy is decreased by a �xed
fraction 1� � every time it collides with the ground. This permits us to write the equivalent
of Equation (143) as

Ej = �
jE0: (153)

From this, we may proceed to develop the jump magnitudes and jump times.

Our �rst step is to revise the relationships for the initial velocity components of each
bounce, Equations (145). These revisions are

�
xj =

�
x0�

j/2 ; (154)
�
zj =

�
z0�

j/2 :
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The jump magnitudes then follow using Equations (150) and (152) as

�
�
xj =

�
x0�

j/2

�
1� 1

�
1
2

�
; (155)

and

�
�
zj =

�
z0�

j/2

�
1 +

1

�
1
2

�
: (156)

The jump time increments then follow directly from Equations (147) and (154) as

�� j = � 1�
j/2 : (157)

This gives jump times via Equation (149) as

� j = � 1

jX
k=1

�(k�1)/2 ; (158)

which we may re-index as

� j = � 1

j�1X
k=0

�k/2 : (159)

We immediately recognize this as a geometric series, permitting us to sum it as

� j = � 1
1� �j/2
1� �1/2 ; (160)

giving us an analytical representation of the jump or collision times.

Despite this advance over the previous case, we still do not have a useful rate di¤erential
equation. To see this, we take the jump series for the horizontal component in Equation
(136) and substitute appropriately,

X
j

�
�
xj� (t� � j) =

�
x0

�
1� 1

�
1
2

� J�X
j=1

�j/2 �

�
t� � 1

1� �j/2
1� �1/2

�
; (161)

where J� is the number of the last collision when the energy goes to zero. If we now take
the Laplace Transform of this equation, we obtain

$

"X
j

�
�
xj� (t� � j)

#
=

�
x0

�
1� 1

�
1
2

� J�X
j=1

�j/2 exp

�
�s� 1

1� �j/2
1� �1/2

�
: (162)

We see immediately that if we attempt to expand the exponential in the manner previously
elaborated, we obtain powers of 1��

j/2

1��1/2 in the denominator of the expansion. How the result-
ing series may be summed is not obvious. Thus, we abandon further discussion of this case,
as we did the previous, for the same reason.
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3. Fixed-Momentum Increment

We now turn our attention to a case where the loss of energy may be expressed as a loss
of momentum by a �xed increment. To pursue this, we return to Equation (139) and make
use of this loss of momentum, giving us

�
x+ =

�
x�

�
r+
�
r�
; (163)

and the analogous equation for the vertical component of velocity. Using our previous
de�nitions, we may rewrite this equation as

�
xj =

�
xj�1

�
rj
�
rj�1

; (164)

and iterating as before produce
�
xj =

�
x0

�
rj
�
r0
: (165)

If, following the manner of our previous de�nition, we de�ne

�
rj =

�
r0 � j�

�
r; (166)

then we may rewrite Equation (165) as

�
xj =

�
x0

�
r0 � j�

�
r

�
r0

: (167)

We may now write the horizontal jump magnitudes using this as

�
�
xj =

�
x0

" �
r0 � j�

�
r

�
r0

�
�
r0 � (j � 1)�

�
r

�
r0

#
; (168)

=
�
�x0

�
�
r
�
r0
:

This is pleasingly simple. The vertical jump magnitudes are not so simple,

�
�
zj =

�
z0

" �
r0 � j�

�
r

�
r0

+

�
r0 � (j � 1)�

�
r

�
r0

#
; (169)

=
�
2z0

" �
r0 �

�
j � 1

2

�
�
�
r

�
r0

#
;

which at least is linear in the index.
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We may also calculate the jump time increments from Equation (147) as

�� j = � 0

�
r0 � (j � 1)�

�
r

�
r0

(170)

= � 0

"
1� (j � 1)�

�
r

�
r0

#
:

We may substitute this into Equation (149) as

� j =

jX
k=1

� 0

"
1� (k � 1)�

�
r

�
r0

#
; (171)

which we may separate and partially re-index as

� j = � 0

"
jX
k=1

1� �
�
r
�
r0

j�1X
k=0

k

#
: (172)

Both of these series are summable using basic �nite di¤erence methods, giving us

� j = � 0

"
j � �

�
r
�
r0

j (j � 1)
2

#
: (173)

This form of the jump or collision times is su¢ ciently complex that it prohibits sum-
mation of expansions of the Laplace Transform of the jump series in the rate di¤erential
equations. Accordingly, we again cease at e¤orts short of simple expressions of these di¤er-
ential equations.

4. Fixed-Momentum Fraction

The last case we take up in this example is one where the momentum is reduced by a
�xed fraction 1�� at each collision. As a result, we may form the initial horizontal velocity
components as

�
xj =

�
x0�

j; (174)

with corresponding equation for the vertical components. Since we have performed this trail
of manipulations three times previously, we have omitted several obvious steps.

From this, the horizontal velocity jumps are

�
�
xj =

�
x0�

j

�
1� 1

�

�
; (175)

while the vertical velocity jumps are

�
�
zj =

�
z0�

j

�
1 +

1

�

�
: (176)
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The jump time increments are
�� j = � 0�

j�1; (177)

and thence the jump times are

� j =

jX
k=1

� 0�
k�1: (178)

We may re-index this and sum,

� j = � 0

j�1X
k=0

�k; (179)

= � 0
1� �j
1� � ;

giving us a form essentially the same as we obtained for the constant energy loss increment
case.

As a result, we again have a situation where we cannot form simple rate di¤erential
equations. While we have de�ned the problem and elaborated a solution means, reduction
to elegant, compact di¤erential equations has eluded us in each case. Nonetheless, we may,
in each case, elaborate the primitive rate di¤erential equations and they are readily amenable
to numeric simulation.

X. STOCHASTIC EXAMPLES

We now consider a series of examples where the jump magnitude, or the event times, or
both are stochastic.

A. The Encounter Problem

The encounter problem is one that is common to many disciplines although it may be
called by another name. For example, in Physics of War I referred to it as the Target
Acquisition problem. I call it the encounter problem here because several disciplines are
concerned with meetings between two entities where one or both of the entities are moving,
usually randomly. Alternately, one entity may be moving while the other is stationary, and
either the motion is random, or the stationary position is random, or both.

Assume that we are concerned with some bounded region of size �, which may be one-,
two-, or three-dimensional. Assume that � is broken up into N subregions of size �. Thus,
N� = �. Further assume that � is sized so that if an entity is present, it can (but not
necessarily must) be detected (observed), but if no entity is present and no detection occurs
in a reasonable period of time, progress may continue with reasonable con�dence. For
elaboration, let there be m (� N) entities in �, and assume no � contains more than one
entity. Further assume that if there is an entity present, the (discrete) probability it will be
detected is pd.
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We may treat this as an independent search (sampling) of the N subregions. Thus, the
probability that an entity is present in a subregion to be detected on any sample is m /N ,
and the independent probability that an entity is detected on a sample is pd m /N . From
this, we may write the probability of detecting an entity on the �rst sample as

P (1) = pd
m

N
; (180)

the probability of detecting an entity on the second sample as

P (2) = pd
m

N

h
1� pd

m

N

i
; (181)

which is just the probability of no detection by the �rst sample times the independent
probability of detecting an entity on a sample, and the probability of detecting an entity on
the third sample as

P (3) = pd
m

N

h
1� pd

m

N

i2
: (182)

From this, we may generalize to the probability of detecting an entity on the nth sample as

P (n) = pd
m

N

h
1� pd

m

N

in�1
: (183)

Now, let P (t) be the continuous probability that a detection has not occurred by time t.
Since the process here is repeated (and presumed stochastic), the archetype rate di¤erential
equation is given by Equation (106),

d

dt
P (t) = �P (t) p(R) (t) N (t) ;

if the jump function is independent of index. In this case, we take the number of agents to
be �xed as one, reducing this equation to

d

dt
P (t) = �P (t) p(R) (t) : (184)

If we now examine the discrete formulation above, Equations (180 to 183), we see that we
may write the jump function as

�P (t) = �pd
m

N
P (t) ; (185)

since the discrete term in brackets is just the probability an entity has not been detected.

As a result, we may rewrite the rate di¤erential equation as

d

dt
P (t) = �pd

m

N
P (t) p(R) (t) : (186)
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We note immediately that if the repeated process is NED distributed (or is deterministic
with equally spaced event times,) then the renewal density function reduces to a constant.
Regardless, we may solve this rate di¤erential equation trivially by inspection as

P (t) = 1� exp
�
�
Z t

0

pd
m

N
p(R) (t0) dt0

�
: (187)

Since the quantity we are commonly interested in is the PDF, we obtain that by di¤erenti-
ation as

pencounter (t) = pd
m

N
p(R) (t) exp

�
�
Z t

0

pd
m

N
p(R) (t0) dt0

�
: (188)

As before, we note that if the renewal is simple, uniform and NED distributed, the renewal
density function is a constant. If the single sample probability of detection, the number of
entities, and the number of subregions are constant, then this reduces very neatly to

pencounter (t) = pd
m

N
p(R) (t) exp

�
�pd

m

N
P (R) (t)

�
: (189)

If we de�ne the quantity

x (t) �
Z t

0

pd
m

N
p(R) (t0) dt0; (190)

then we may change variables and rewrite Equation (188) as

pencounter (x) = exp (�x) ; (191)

from which we may immediately calculate that

p
(R)
encounter (x) = 1: (192)

Reversing the change of variable, we obtain

p
(R)
encounter (t) = pd

m

N
p(R) (t) ; (193)

which now gives us all the information we need. This is an example of using Rate Theory
to convert discrete or mixed stochastic processes into continuous representation.

B. Drunkard�s Walk 1

A dipsomaniac is standing on a sidewalk. Every time increment �t, he (she) takes
a forward step of length �x with probability f , or a backward step (same length) with
probability b, or stays in place with probability s. This process is illustrated in Figure 10.

By inspection, we see that the jump does not depend on index but is su¢ ciently compli-
cated that some analysis is required. The appropriate rate di¤erential equation is

@

@t
u (x; t) =

�u (x; t)

�t
; (194)
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Figure 10. Illustrative One-Dimensional Drunkard�s Walk Trajectories and Mean Trajectory

where: u (x; t) = probability the dipsomaniac is at position x at time t. The challenge is
now to form the jump function �u (x; t). Since the jump is presumed to be instantaneous,
we may make use of the same continuous representation as we used in the previous example.

Because there are three states �forward, backward, and stay in place �we have to consider
four quantities for any position x. Prior to the jump, the probability the dipsomaniac is at
this position is u (x; t). There is also probability s that this position is maintained. There
is also probability f that the dipsomaniac will move from x to x+�x, and probability b of
moving to x��x. Recognizing that probability �ows into the position during the jump, we
may write the before jump term as

ubefore = u (x; t) ; (195)

and the after term as

uafter = f u (x��x; t) + b u (x+�x; t) + s u (x; t) : (196)

Notice that the forward and backward probabilities are associated with positions in the
opposite directions. This follows from the �ow of probability into position x from position
x��x moving forward with probability f .
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The combination of these two give us the jump function as

�u (x; t) = uafter � ubefore (197)

= f u (x��x; t) + b u (x+�x; t) + (s� 1) u (x; t) :

We now expand the right side of this equation in a Taylor�s Series about x. This gives us

�u (x; t) = f

�
u (x; t)� @u (x; t)

@x
�x+

@2u (x; t)

@x2
�x2

2
+HOT

�
(198)

+b

�
u (x; t) +

@u (x; t)

@x
�x+

@2u (x; t)

@x2
�x2

2
+HOT

�
+(s� 1) u (x; t) :

From conservation of probability, we may simplify this somewhat as

�u (x; t) = (b� f) @u (x; t)
@x

�x+ (b+ f)
@2u (x; t)

@x2
�x2

2
; (199)

and thence the rate di¤erential equation

@

@t
u (x; t) = (b� f) �x

�t

@u (x; t)

@x
+
(b+ f)

2

�x2

�t

@2u (x; t)

@x2
: (200)

We see immediately that this is the di¤erential equation associated with a di¤usion process,
the �rst right-side term being associated with drift and the second with di¤usion proper.

C. Drunkard�s Walk 2

The previous example presumed that the steps were taken at even, deterministic intervals.
Now we elaborate by assuming that the time when steps occur is stochastic with PDF p (t)
and that time to step is independent of step length.

In this case, we should have started with rate di¤erential Equation (106) instead of
Equation (103)

@

@t
u (x; t) = �u (x; t) p(R) (t) : (201)

The renewal density function can be calculated directly since we know the PDF, and the
jump function is the same as developed immediately previous. As a result, we may write the
rate di¤erential equation as

@

@t
u (x; t) = (b� f)�x p(R) (t) @u (x; t)

@x
(202)

+
(b+ f)

2
�x2 p(R) (t)

@2u (x; t)

@x2
;

which we still recognize as a di¤usion di¤erential equation. As before, if the time to step
PDF is NED, then this rate di¤erential equation reduces back to the form of Equation (200).
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D. Drunkard�s Walk 3

We now elaborate when the step length is still independent of time to step but becomes
stochastic with PDF q (x). For simplicity, we assume that forward and backward steps are
identically distributed. Elaboration to either di¤erent distributions or a single distribution
for forward and backward steps is straightforward and we shall not treat it here.

Our starting point is Equation (201), and we proceed through the same process of devel-
oping the jump function as before. This gives us a rate di¤erential equation

@

@t
u (x; t) = (b� f)�x p(R) (t) @u (x; t)

@x

+
(b+ f)

2
�x2 p(R) (t)

@2u (x; t)

@x2
;

which is the same as Equation (202) except that we now interpret �x as a random variable.
Accordingly, we need to calculate the expected value of this equation with respect to this
random variable. This is straightforward and yields

@

@t
u (x; t) = (b� f) h�xi p(R) (t) @u (x; t)

@x
(203)

+
(b+ f)

2



�x2

�
p(R) (t)

@2u (x; t)

@x2
;

where h�xi ; h�x2i are the expected values of the step length, step length-squared. The
left side is not changed since it is independent of step size. The de�nition of the standard
deviation allows us to rewrite this as

@

@t
u (x; t) = (b� f) h�xi p(R) (t) @u (x; t)

@x
(204)

+
(b+ f)

2

�
�2 + h�xi2

�
p(R) (t)

@2u (x; t)

@x2
;

which illustrates a di¤erence from what is normally presented in textbooks.

E. The Logistics Equation

While this section and its di¤erential equation are called the Logistics Equation, I am
going to approach it from the standpoint of the spread of disease because I �nd it easier to
understand and develop in that context.

The disease in question is non-lethal �so we don�t have to worry about counting those
who die �and is spread only through direct contact, which may be either physical contact or
near proximity. The quantity d (t) is the number of people at time t who have the disease.
We take the total population, which is �xed, to be N and the likelihood that the disease is
caught, given contact, is l. Obviously, we also assume that no one ever recovers.

All of these restrictions can be relaxed or eliminated, but we are aiming toward a result
here and don�t want to get too complicated too fast.
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The starting point is Equation (106),

d

dt
d (t) = �d (t) p(R) (t) N (t) : (205)

We note immediately that the number of agents causing events is just the number of people
with the disease, so we may rewrite this immediately as

d

dt
d (t) = �d (t) p(R) (t) d (t) : (206)

If an encounter (event) occurs between two diseased people, the jump is zero, since both
have the disease; if an encounter occurs between a diseased person and an undiseased person,
then the undiseased person may contract the disease with likelihood l. Thus, we need only
count encounters between diseased and undiseased people and the jump is stochastic with
magnitude l.

The renewal density function represent the encounters, and since we have a zero jump
for encounters between two diseased people, we only have to count encounters between a
diseased and an undiseased individual. This is a variant on the Encounter Problem, so we
may use Equation (193),

p
(R)
encounter (t) = pd

m

N
q(R) (t) ;

to build the renewal density function for the Logistics Equation. In this case, the number
of subregions is just the total number of people, which is N ! N , the number of entities
that can be encountered is the number of undiseased people, which is m ! N � d (t), the
probability of detection is one - pd ! 1,4 and the sample renewal density rate is just the rate
of samples, so q(R) (t)! q(R) (t).

As a result, the rate di¤erential equation becomes

d

dt
d (t) = l

N � d (t)
N

q(R) (t) d (t) : (207)

This equation may be rearranged as

d

dt
d (t) = l q(R) (t) d (t)� l q

(R) (t)

N
d2 (t) ; (208)

which is a form commonly expressed as the Logistics Equation [Ball 1985].

As a matter of clari�cation, in this model, the initial condition has to be d (t0) > 0.
Otherwise, no one ever gets the disease.

4Equivalently, we could have counted the encounters not as such but as disease transmission. In that
case, the probability of detection would be the likelihood of contracting the disease and the jump function
one.
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F. Predator and Prey

The Lotka-Volterra equations,[Ball 1985]

dx

dt
= Ax�Bxy; (209)

dy

dt
= �Cx+Dxy;

are classical di¤erential equations describing the dynamics of a population x (t) of prey and
a population y (t) of predators. The �rst right-side term in the prey equation represents the
increase in the prey population, and the second term its decrease. The forms are reversed
in the predator equation.

We assume that these prey and predator constitute a closed system and that there is
su¢ cient food for the prey that they never lack.

In a closed system where members do not migrate, an increase in the number of members
is the result of reproduction. Reproduction may take two forms (that we know of): sexual
and asexual. In asexual reproduction, one parent divides into two or more o¤spring. In
sexual reproduction, two parents must mate to produce one or more o¤spring, n.

In terms of rates, asexual reproduction produces n o¤spring, where n may be the ex-
pected value of some random variable, so we have a rate of increase of asexually reproducing
population as

rasexual �
n� 1
�t

N (t) ; (210)

where: �t = the time between reproductions (assuming these times are deterministic or
stochastic with NED distribution, otherwise, = 1

�
s(R) (t) , s(R) (t) = renewal density function

of reproductions), and N (t) = (reproducible) population at time t. If, on the other hand,
the reproduction is sexual, then the rate of that reproduction should be

rsexual �
n

2�t
N (t)2 ; (211)

on the assumption that the population is evenly divided between male and female members.
(Whence the factor of 2, since only half of possible encounters will be between opposite sex
individuals.) The form of this rate follows directly from the encounter problem.

There are two major causes of death for prey and one for predators. Both may die of old
age, which has a rate of

rdeath � �
1

�t
N (t) ; (212)

where: �t = the average life span (again either deterministic or NED). This assumes we have
not been keeping up with ages and death by old age occurs uniformly among the population
(which is a bit of a misnomer.) Death by being eaten, which applies uniquely to prey, has
the rate

reaten � �
p

�t
N (t)M (t) ; (213)
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where: �t = the encounter time for predator and prey, p = the probability that a predator
will catch and eat a prey (actually kill a prey) in an encounter, and N (t) ;M (t) = the
populations of prey and predator.

If we now assume that both predator and prey reproduce asexually, then the predator-
prey rate di¤erential equations should be

dx

dt
=

n� 1
�trepro

x� 1

�told age
x� p

�teaten
xy; (214)

dy

dt
=

n0 � 1
�t0repro

y � 1

�t0old age
y;

since eating prey does not cause new predators directly to be produced. Note that the
predator quantities are primed here. If both predators and prey reproduce sexually, then
the rate di¤erential equations may be

dx

dt
=

n

2�trepro
x2 � 1

�told age
x� p

�teaten
xy; (215)

dy

dt
=

n0

2�t0repro
y2 � 1

�t0old age
y:

Notice that neither set of these rate di¤erential equations look like the Lotka-Volterra equa-
tions.

We might want to account for a predator starving to death if it doesn�t get to eat a prey
in a certain amount of time. If we say that a predator will starve if it goes k encounters with
a prey without eating. If the time between encounters is �tencounter and the probability of
eating a prey on an encounter is � peatx /� , where � = the ratio of total hunting area to
encounter area, then the rate of starvation is approximately

rstarve � �
1

k�tencounter

�
1� peatx

�

�k
y; (216)

and the sexual rate di¤erential equations become

dx

dt
=

n

2�trepro
x2 � 1

�told age
x� p

�teaten
xy; (217)

dy

dt
=

n0

2�t0repro
y2 � 1

�t0old age
y � 1

k�tencounter

�
1� peatx

�

�k
y:

If peatx /� � 1, then we have the forms

dx

dt
=

n

2�trepro
x2 � 1

�told age
x� p

�teaten
xy; (218)

dy

dt
=

n0

2�t0repro
y2 � 1

�t0old age
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h
1� kpeatx

�

i
k�tencounter

y;
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which gets us closer to the form of the Lotka-Volterra equations, especially for the asexual
reproduction forms.

This is a rather obvious example where rate theory produces something strikingly di¤erent
from what is commonly used on a more ad hoc basis.

G. Lanchester Equations

The Lanchester Equations [Lanchester 1916] describe losses to a force in combat due to
the exchange of �re. An elaboration of these equations is commonly used to describe forces
comprised of more than one type of combat element, but we shall restrict our discussion here
to the homogeneous problem. Considerable discussion of the validity of these di¤erential
equations rages, in many cases because of the lack of understanding of what they represent.
We derive these equations to their commonly used (and restricted) forms.

The Lanchester Equations are normally paired and symmetric, although this is not nec-
essary and is more convenience and tradition than necessity. Additionally, while they admit
(at least for one form) changes in �force strength" due to reinforcement, they are commonly
started impulsively while real combat is seldom so ordered [Fowler 2004].

We consider two cases where each individual weapons��re has a lethality area/volume
that is less than that of a single combat element or more than that of one. Thus, we
distinguish between situations of point lethality where at most one combat element may be
attrited and area (volume) lethality where more than one combat element may be attrited.

We label the two sides as enemy and friendly, and designate the number of elements
at time t as E (t) for the enemy force, and F (t) for the friendly force. We also limit our
discussion to only one side�s su¤ered attrition.

1. Point Lethality

Point lethality is commonly associated with direct, that is, line-of-sight, �re. It commonly
consists of two processes: �nding an enemy element to shoot at and the actual shooting
itself. In most cases, the �rst is a variant of the encounter problem. We can approximate
the target-�nding process with a PDF ala Equation (188)

pencounter (t) = pd
m

N
p(R) (t) exp

�
�
Z t

0

pd
m

N
p(R) (t0) dt0

�
(219)

! pfind (t) ' �
E (t)

A (t)
exp

�
�� E (t)

A (t)
t

�
;

where: A (t) = the area (or volume, depending on the search and sensor forms,) occupied by
the enemy force, the search process is assumed to be uniform, simple, and NED, and the ratio
E (t) /A (t) is assumed to be constant or slowly varying. Since we will be leading up to some
limiting behaviors, the latter is not critical to the development of Lanchester�s Equations
but is in the general context of attrition modeling. Also, because of these restrictions and
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assumptions, all other factors may be lumped in the coe¢ cient �. Note that we may develop
A (t) from the de�nition of � and � in our discussion of the encounter problem above.

The shooting process is assumed to be NED with rate �. As a result, we may write the
point-lethality process renewal density function as

p
(R)
Point (t) =

� E(t)
A(t)
�

� E(t)
A(t)

+ �

h
1� e�(�

E(t)
A(t)

+�)t
i
; (220)

from Equation (109). (We are considering here the case of friendly elements shooting at
enemy elements.)

Since this is point lethality, the jump is uniquely �1, since only one element is attrited
and the attrition reduces the force strength. Thus, from Equation (106) we may write the
rate di¤erential equation of the enemy force strength as

d

dt
E (t) = �

� E(t)
A(t)
�

� E(t)
A(t)

+ �

h
1� e�(�

E(t)
A(t)

+�)t
i
F (t) : (221)

We now wish away the time dependent term in the brackets. Two related but di¤erent
arguments permit this. The �rst, which is similar to that used in Bonder-Farrell Theory
[Fowler 2004, and references therein] is that the rate is de�ned ala Blackwell�s Theorem in
the in�nite time limit. The second is that we are interested in the steady state or equilibrium
behavior. Regardless, Equation (221) simpli�es to

d

dt
E (t) = �

� E(t)
A(t)
�

� E(t)
A(t)

+ �
F (t) : (222)

We now assume that the time to �nd a target is much less than the time to shoot and
attrit a target. This is just an investigation of limiting behavior. As a result,

�
E (t)

A (t)
� �; (223)

and Equation (222) may be reduced to

d

dt
E (t) = ��F (t) ; (224)

which is a linear di¤erential equation, but in Lanchester Theory terms it is called a quadratic
Lanchester equation (because of the form of it and its symmetric complement�s normal
form solution). This demonstrates that point lethality reduces to a quadratic Lanchester
di¤erential equation when target density is high, target shooting is slow, or target �nding is
fast.
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When the opposite is true, and the time to �nd a target is much greater than the time
to shoot and attrit a target, Equation (222) reduces to

d

dt
E (t) = �� E (t)

A (t)
F (t) : (225)

Now, if the density of enemy elements stays �xed over time, this further reduces to

d

dt
E (t) = �� E (0)

A (0)
F (t) ; (226)

which is again a quadratic Lanchester di¤erential equation. If the target density varies, as
would be the case if the area occupied stays �xed, then Equation (222) reduces to

d

dt
E (t) = �� E (t)

A (0)
F (t) ; (227)

which is a non-linear rate di¤erential equation, but in Lanchester terms it is a linear Lanchester
di¤erential equation. This demonstrates the other extreme behavior.

2. Area Lethality

Area lethality �re is normally directed since the weapons do not have line-of-sight to
their targets. In such circumstances and assuming that the �ring is simple, uniform, and
NED with rate , we may again use Equation (106)

d

dt
E (t) = �E F (t) : (228)

The jump is the number of enemy elements killed per friendly shot. This should be
(approximately)

�E ' �pkjs
E (t)

A (t)
aLethal; (229)

where: pkjs = the probability of kill in the lethal area given a shot, aLethal = lethal area per
shot, and E (t) /A (t) = the density of enemy elements. Substitution of this yields

d

dt
E (t) = �pkjs

E (t)

A (t)
aLethal F (t) : (230)

If we now take the limit that the density stays constant, then this reduces to

d

dt
E (t) = �pkjs

E (0)

A (0)
aLethal F (t) ; (231)

which is a quadratic Lanchester di¤erential equation. If the occupied area stays �xed, then
the limit is

d

dt
E (t) = �pkjs

E (t)

A (0)
aLethal F (t) ; (232)
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which is a linear Lanchester di¤erential equation.

Regardless of whether we are considering point or area lethality in the long time or equi-
librium limit, we may obtain either a linear or a quadratic Lanchester di¤erential equation,
depending on limiting assumptions.
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